Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Viruses ; 14(12)2022 12 08.
Article in English | MEDLINE | ID: covidwho-2155310

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the general population in the context of a relatively high immunity gained through the early waves of coronavirus disease 19 (COVID-19), and vaccination campaigns. Despite this context, a significant number of patients were hospitalized, and identifying the risk factors associated with severe disease in the Omicron era is critical for targeting further preventive, and curative interventions. We retrospectively analyzed the individual medical records of 1501 SARS-CoV-2 positive hospitalized patients between 13 December 2021, and 13 February 2022, in Belgium, of which 187 (12.5%) were infected with Delta, and 1036 (69.0%) with Omicron. Unvaccinated adults showed an increased risk of moderate/severe/critical/fatal COVID-19 (crude OR 1.54; 95% CI 1.09-2.16) compared to vaccinated patients, whether infected with Omicron or Delta. In adults infected with Omicron and moderate/severe/critical/fatal COVID-19 (n = 323), immunocompromised patients showed an increased risk of in-hospital mortality related to COVID-19 (adjusted OR 2.42; 95% CI 1.39-4.22), compared to non-immunocompromised patients. The upcoming impact of the pandemic will be defined by evolving viral variants, and the immune system status of the population. The observations support that, in the context of an intrinsically less virulent variant, vaccination and underlying patient immunity remain the main drivers of severe disease.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Retrospective Studies , Immunocompromised Host
2.
Viruses ; 14(10)2022 10 20.
Article in English | MEDLINE | ID: covidwho-2081913

ABSTRACT

An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.


Subject(s)
COVID-19 , Pandemics , Humans , Belgium/epidemiology , COVID-19/epidemiology , Genome, Viral , Genomics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing
3.
Acta Clin Belg ; 77(3): 647-652, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2077515

ABSTRACT

PURPOSE: In the context of the current COVID-19 pandemic, multiple serological assays for the detection of severe acute respiratory syndrome 2 (SARS-CoV-2) immune response are currently being developed. This study compares the FRENDTM COVID-19 IgG/IgM Duo (NanoEntec) a point of care (POCT) assay with the automated Elecsys anti-SARS-CoV-2 electrochemiluminescent assay (Roche Diagnostics). METHODS: Serum samples (n = 81) from PCR-confirmed SARS-CoV-2 positive patients at different time points after the onset of symptoms were analyzed with both assays. An additional 24 serum samples with cross reactivity potential were also included. RESULTS: The sensitivity of the COVID-19 IgG/IgM Duo assay was higher as compared to the Elecsys anti-SARS-CoV-2 assay, especially when using the combined IgM/IgG result in samples analyzed within 6 days after the onset of symptoms (46.2% vs. 15.4%). The sensitivity of both assays increased with increasing time interval after the onset of symptoms and reached 100% for the COVID-19 IgG/IgM Duo assay in samples taken 14 days or more after symptom onset. Specificity of the COVID-19 IgG/IgM Duo assay was 95.8% for IgM, 91.7% for IgG and 87.5% for the combination of both. CONCLUSION: This study shows that the sensitivity of both assays was highly dependent on the time interval between the onset of the COVID-19 symptoms and serum sampling. Furthermore, rapid serological testing for SARS-CoV-2 antibodies by means of the FRENDTM COVID-19 IgG/IgM Duo POCT assay showed a comparable diagnostic performance as the reference automated immunoassay.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Pandemics , Point-of-Care Testing , SARS-CoV-2 , Sensitivity and Specificity
4.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: covidwho-2006232

ABSTRACT

The use of saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sparks debate due to presumed lower sensitivity and lack of standardization. Our aim was to evaluate the performance characteristics of (i) saliva collected by the ORAcollectTM device as a matrix for SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR), and (ii) 2 saliva rapid antigen tests (AgRDT). From 342 ambulatory individuals, both a nasopharyngeal swab and saliva sample via ORAcollectTM were obtained for a SARS-CoV-2 RT-PCR test. Furthermore, 54 and 123 additionally performed the V-ChekTM or WhistlingTM saliva AgRDT. In total, 35% of individuals screened positive for SARS-CoV-2 via nasopharyngeal swab. Saliva, as a matrix for the RT-PCR, had a specificity of 96.5% and a negative predictive value (NPV) of 91.3%. Interestingly, 6 out of 8 patients thought to be false positive in saliva re-tested positive by nasopharyngeal sampling after 2 to 9 days. Both V-ChekTM and WhistlingTM AgRDT had a lack of sensitivity, resulting in an NPV of 66.9 and 67.3%, respectively. Saliva proved to be a sensitive and specific matrix for SARS-CoV-2 detection by the RT-PCR. In this setting, saliva might have an earlier window of detection than the nasopharyngeal swab. By contrast, both AgRDT showed an unacceptably low sensitivity and NPV.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Nasopharynx , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity , Specimen Handling/methods
5.
Euro Surveill ; 27(21)2022 05.
Article in English | MEDLINE | ID: covidwho-1875328

ABSTRACT

Presence of SARS-CoV-2 was monitored in nasopharyngeal samples from young children aged 6-30 months attending day-care centres (DCCs) in Belgium from May 2020-February 2022. SARS-CoV-2 carriage among DCC children was only detected from November 2021, after emergence of Delta and Omicron variants, in 9 of the 42 DCCs screened. In only one DCC, two children tested positive for SARS-CoV-2 at the same sampling time point, suggesting limited transmission of SARS-CoV-2 in Belgian DCCs among young children during the studied period.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , Child , Child, Preschool , Humans
6.
Br J Gen Pract ; 72(716): e217-e224, 2022 03.
Article in English | MEDLINE | ID: covidwho-1608429

ABSTRACT

BACKGROUND: There is little evidence about the relationship between aetiology, illness severity, and clinical course of respiratory tract infections (RTIs) in primary care. Understanding these associations would aid in the development of effective management strategies for these infections. AIM: To investigate whether clinical presentation and illness course differ between RTIs where a viral pathogen was detected and those where a potential bacterial pathogen was found. DESIGN AND SETTING: Post hoc analysis of data from a pragmatic randomised trial on the effects of oseltamivir in patients with flu-like illness in primary care (n = 3266) in 15 European countries. METHOD: Patient characteristics and their signs and symptoms of disease were registered at baseline. Nasopharyngeal (adults) or nasal and pharyngeal (children) swabs were taken for polymerase chain reaction analysis. Patients were followed up until 28 days after inclusion. Regression models and Kaplan-Meier curves were used to analyse the relationship between aetiology, clinical presentation at baseline, and course of disease including complications. RESULTS: Except for a less prominent congested nose (odds ratio [OR] 0.55, 95% confidence interval [CI] = 0.35 to 0.86) and acute cough (OR 0.42, 95% CI = 0.27 to 0.65) in patients with flu-like illness in whom a possible bacterial pathogen was isolated, there were no clear clinical differences in presentations between those with a possible bacterial aetiology compared with those with a viral aetiology. Also, course of disease and complications were not related to aetiology. CONCLUSION: Given current available microbiological tests and antimicrobial treatments, and outside pandemics such as COVID-19, microbiological testing in primary care patients with flu-like illness seems to have limited value. A wait-and-see policy in most of these patients with flu-like illness seems the best option.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , Adult , Child , Humans , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Virus Diseases/complications , Virus Diseases/diagnosis , Virus Diseases/epidemiology
7.
Acta Clin Belg ; 77(6): 925-932, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541456

ABSTRACT

INTRODUCTION: The B.1.617.2 SARS-CoV-2 or Delta variant, first detected in India, has shown a rapid global spread due to its high transmissibility and now represents more than 99% of the currently circulating variants in Europe. METHODS AND RESULT: In May 2021, two ships that had recently arrived in the Port of Antwerp reported crew members with COVID-like symptoms. SARS-CoV-2 RNA was detected in nasopharyngeal swabs in 30 out of 45 skippers and the B.1.617.2 variant was identified via whole genome sequencing. Crew members were isolated or quarantined and repeatedly tested to assess the evolution of their SARS-CoV-2 viral load based on the cycle threshold (CT) values of the PCR reaction. Viral cultures were also taken at day 7 to detect viable virus and were compared with the subjects CT value at that moment. The shipper's clinical condition was closely observed using a digital home monitoring tool. Eleven crew members (37%) required hospitalization, with CT values of SARS-CoV-2 RNA being a good predictive factor for the hospitalization need. Furthermore, a clear correlation between CT values and positive viral culture was observed, hinting infectiousness even longer than 10 days after the intitial positive PCR test. CONCLUSION: Our study of 2 Delta variant clusters shows that the initial CT value is a good predictor for hospitalization need and suggests that patients infected with this variant may remain infectious for a longer time period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , COVID-19/diagnosis , COVID-19/epidemiology , Disease Outbreaks
8.
J Clin Virol ; 144: 104998, 2021 11.
Article in English | MEDLINE | ID: covidwho-1457176

ABSTRACT

BACKGROUND: Influenza virus (IFV) is often encountered in primary care. Implementation of a rapid diagnostic test for its detection at the point-of-care would enable discrimination from other viral causes of influenza-like-illness (ILI) and might be helpful in individual patient management. In this study, the diagnostic performance of such a point-of-care platform was evaluated. METHODS: Respiratory samples (n = 1490) from ILI-patients in primary care in 15 European countries were collected as part of a prospective clinical trial. Both children (n = 252) and adults (n = 1238) were sampled during 3 consecutive periods of high IFV endemicity. Samples were analysed in a central laboratory, after storage at -70 °C, with the Idylla™ Respiratory Panel, detecting both IFV and RSV, on the Idylla™ platform. The Fast Track Diagnostics (FTD) Respiratory Pathogens 21 plus assay was used as reference. A subset of samples (n = 192) was analysed both fresh and after being frozen. RESULTS: The reference method detected IFV-A in 42% and IFV-B in 13% of the samples. Sensitivity of the Idylla for detection of IFV-A and IFV-B was 98.2% and 92.3% and specificity 97.7% and 98.4% respectively. False negative samples contained significantly lower viral loads than true positive samples (FTD mean Ct-value 30.7 versus 26.1 for IFV-A and 30.4 versus 25.1 for IFV-B, p < 0.001). Comparable results were obtained for Idylla analysis using fresh and frozen samples. CONCLUSIONS: The Idylla Respiratory Panel is a promising point-of-care test for detection of IFV in ILI patients due to its excellent diagnostic performance, minimal training requirements and limited hands-on time.


Subject(s)
Influenza A virus , Influenza, Human , Adult , Child , Humans , Influenza B virus , Influenza, Human/diagnosis , Primary Health Care , Prospective Studies , Seasons , Sensitivity and Specificity
9.
Clin Microbiol Infect ; 28(1): 124-129, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1479592

ABSTRACT

OBJECTIVES: To evaluate a testing algorithm for the rapid identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that includes the use of PCR-based targeted single nucleotide polymorphism (SNP) detection assays preceded by a multiplex PCR sensitive to S-Gene Target Failure (SGTF). METHODS: PCR SNP assays targeting SARS-CoV-2 S-gene mutations ΔH69-V70, L452R, E484K, N501Y, H655Y and P681R using melting curve analysis were performed on 567 samples in which SARS-CoV-2 viral RNA was detected by a multiplex PCR. Viral whole-genome sequencing (WGS) was performed to confirm the presence of SNPs and to identify the Pangolin lineage. Additionally, 1133 SARS-CoV-2 positive samples with SGTF were further assessed by WGS to determine the presence of ΔH69-V70. RESULTS: The N501Y-specific assay (n = 567) had an overall percentage agreement (OPA) of 98.5%. The ΔH69-V70-specific (n = 178) and E484K-specific (n = 401) assays had OPA of 96.6% and 99.7%, respectively. Assessment of H655Y (n = 139) yielded a 100.0% concordance when applied in the proposed algorithm. The L452R-specific (n = 67) and P681R-specific (n = 62) assays had an OPA of 98.2% and 98.1%, respectively. The proposed algorithm identified six variants of concern/interest (VOC/VOI)-Alpha (n = 149), Beta (n = 65), Gamma (n = 86), Delta (n = 49), Eta (n = 6), Kappa (n = 6)-and 205 non-VOC/VOI strains-including the variants under monitoring B.1.214.2 (n = 43) and B.1.1.318 (n = 18) and Epsilon (n = 1). An excellent concordance was observed for the identification of all SARS-CoV-2 lineages evaluated. CONCLUSIONS: We present a flexible testing algorithm for the rapid detection of current and emerging SARS-CoV-2 VOC/VOIs, which can be easily adapted based on the local endemicity of specific variants.


Subject(s)
COVID-19/diagnosis , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Algorithms , Humans , Multiplex Polymerase Chain Reaction , Mutation , Pandemics , Polymerase Chain Reaction , Spike Glycoprotein, Coronavirus/genetics
10.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1302415

ABSTRACT

The potential of first-void (FV) urine as a non-invasive liquid biopsy for detection of human papillomavirus (HPV) DNA and other biomarkers has been increasingly recognized over the past decade. In this study, we investigated whether the volume of this initial urine stream has an impact on the analytical performance of biomarkers. In parallel, we evaluated different DNA extraction protocols and introduced an internal control in the urine preservative. Twenty-five women, diagnosed with high-risk HPV, provided three home-collected FV urine samples using three FV urine collection devices (Colli-Pee) with collector tubes that differ in volume (4, 10, 20 mL). Each collector tube was prefilled with Urine Conservation Medium spiked with phocine herpesvirus 1 (PhHV-1) DNA as internal control. Five different DNA extraction protocols were compared, followed by PCR for GAPDH and PhHV-1 (qPCR), HPV DNA, and HBB (HPV-Risk Assay), and ACTB (methylation-specific qPCR). Results showed limited effects of collection volume on human and HPV DNA endpoints. In contrast, significant variations in yield for human endpoints were observed for different DNA extraction methods (p < 0.05). Additionally, the potential of PhHV-1 as internal control to monitor FV urine collection, storage, and processing was demonstrated.


Subject(s)
Biomarkers , DNA, Viral , Molecular Diagnostic Techniques , Papillomaviridae , Papillomavirus Infections/diagnosis , Papillomavirus Infections/urine , Adult , DNA, Viral/isolation & purification , DNA, Viral/urine , Female , Humans , Middle Aged , Papillomaviridae/genetics , Papillomavirus Infections/virology , Reproducibility of Results , Sensitivity and Specificity , Workflow , Young Adult
11.
Clin Chem Lab Med ; 59(2): 411-419, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-961471

ABSTRACT

Objectives: Development and implementation of SARS-CoV-2 serologic assays gained momentum. Laboratories keep on investigating the performance of these assays. In this study, we compared three fully automated SARS-CoV-2 antibody assays. Methods: A total of 186 samples from 84 PCR-positive COVID-19 patients and 120 control samples taken before the SARS-CoV-2 pandemic were analyzed using commercial serologic assays from Roche, Siemens and DiaSorin. Time after the positive COVID-19 PCR result and onset of symptoms was retrieved from the medical record. An extended golden standard, using the result of all three assays was defined, judging if antibodies are present or absent in a sample. Diagnostic and screening sensitivity/specificity and positive/negative predictive value were calculated. Results: Diagnostic sensitivity (ability to detect a COVID-19 positive patient) ≥14 days after positive PCR testing was 96.7% (95% CI 88.5-99.6%) for DiaSorin, 93.3% (95% CI 83.8-98.2%) for Roche and 100% (95% CI 94.0-100%) for Siemens. Lower diagnostic sensitivities were observed <14 days after onset of symptoms for all three assay. Diagnostic specificity (ability to detect a COVID-19 negative patient) was 95.0% (95% CI 89.4-98.1%) for DiaSorin, 99.2% (95% CI 95.4-99.9%) for Roche and 100% (95% CI 97.0-100%) for Siemens. The sensitivity/specificity for detecting antibodies (ability of detecting absence (specificity) or presence (sensitivity) of COVID-19 antibodies) was 92.4% (95% CI 86.4-96.3%)/94.9% (95% CI 90.5-97.6%) for DiaSorin, 97.7% (95% CI 93.5-99.5%)/97.1% (95% CI 93.5-99.1%) for Roche and 98.5% (95% CI 94.6-99.8)/97.1 (95% CI 93.5-99.1%) for Siemens. Conclusions: This study revealed acceptable performance for all three assays. An orthogonal testing algorithm using the Siemens and Roche assay achieved the highest positive predictive values for antibody detection in low seroprevalence settings.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Adult , Aged , Aged, 80 and over , Algorithms , Automation, Laboratory , COVID-19/immunology , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
12.
Euro Surveill ; 25(27)2020 07.
Article in English | MEDLINE | ID: covidwho-845124

ABSTRACT

Laboratory preparedness with quality-assured diagnostic assays is essential for controlling the current coronavirus disease (COVID-19) outbreak. We conducted an external quality assessment study with inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) samples to support clinical laboratories with a proficiency testing option for molecular assays. To analyse SARS-CoV-2 testing performance, we used an online questionnaire developed for the European Union project RECOVER to assess molecular testing capacities in clinical diagnostic laboratories.


Subject(s)
Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Molecular Diagnostic Techniques/methods , Pandemics , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Services , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks , Europe , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2 , Sensitivity and Specificity , Surveys and Questionnaires
13.
ESC Heart Fail ; 7(6): 3772-3781, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-777436

ABSTRACT

AIMS: Cardiovascular complications, including myocarditis, are observed in coronavirus disease 2019 (COVID-19). Major cardiac involvement is a potentially lethal feature in severe cases. We sought to describe the underlying pathophysiological mechanism in COVID-19 lethal cardiogenic shock. METHODS AND RESULTS: We report on a 48-year-old male COVID-19 patient with cardiogenic shock; despite extracorporeal life support, dialysis, and massive pharmacological support, this rescue therapy was not successful. Severe acute respiratory syndrome coronavirus 2 RNA was detected at autopsy in the lungs and myocardium. Histopathological examination revealed diffuse alveolar damage, proliferation of type II pneumocytes, lymphocytes in the lung interstitium, and pulmonary microemboli. Moreover, patchy muscular, sometimes perivascular, interstitial mononuclear inflammatory infiltrates, dominated by lymphocytes, were seen in the cardiac tissue. The lymphocytes 'interlocked' the myocytes, resulting in myocyte degeneration and necrosis. Predominantly, T-cell lymphocytes with a CD4:CD8 ratio of 1.7 infiltrated the interstitial myocardium, reflecting true myocarditis. The myocardial tissue was examined for markers of ferroptosis, an iron-catalysed form of regulated cell death that occurs through excessive peroxidation of polyunsaturated fatty acids. Immunohistochemical staining with E06, a monoclonal antibody binding to oxidized phosphatidylcholine (reflecting lipid peroxidation during ferroptosis), was positive in morphologically degenerating and necrotic cardiomyocytes adjacent to the infiltrate of lymphocytes, near arteries, in the epicardium and myocardium. A similar ferroptosis signature was present in the myocardium of a COVID-19 subject without myocarditis. In a case of sudden death due to viral myocarditis of unknown aetiology, however, immunohistochemical staining with E06 was negative. The renal proximal tubuli stained positively for E06 and also hydroxynonenal (4-HNE), a reactive breakdown product of the lipid peroxides that execute ferroptosis. In the case of myocarditis of other aetiology, the renal tissue displayed no positivity for E06 or 4-HNE. CONCLUSIONS: The findings in this case are unique as this is the first report on accumulated oxidized phospholipids (or their breakdown products) in myocardial and renal tissue in COVID-19. This highlights ferroptosis, proposed to detrimentally contribute to some forms of ischaemia-reperfusion injury, as a detrimental factor in COVID-19 cardiac damage and multiple organ failure.

14.
J Clin Virol ; 129: 104510, 2020 08.
Article in English | MEDLINE | ID: covidwho-601933

ABSTRACT

The emergence of a new coronavirus in Wuhan China has triggered a global need for accurate diagnostic assays. Initially, mostly laboratory developed molecular tests were available but shortly thereafter different commercial assays started to appear and are still increasing in number. Although independent performance evaluations are ongoing, available data is still scarce. Here we provide a direct comparison of key performance characteristics of 13 commercial RT-PCR assays. Thirteen RT-PCR assays were selected based on the criteria that they can be used following generic RNA extraction protocols, on common PCR platforms and availability. Using a 10-fold and 2-fold dilution series of a quantified SARS-CoV-2 cell-cultured virus stock, performance was assessed compared to our in house validated assay. Specificity was tested by using RNA extracted from cultured common human coronaviruses. All RT-PCR kits included in this study exhibited PCR efficiencies > 90%, except for the Sentinel Diagnostics B E-gene RUO assay (80%). Analytical sensitivity varied between 3.3 RNA copies to 330 RNA copies. Only one assay cross reacted with another human coronavirus (MERS). This study provides a technical baseline of 13 different commercial PCR assays for SARS-CoV-2 detection that can be used by laboratories interested in purchasing any of these for further full clinical validation.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Cross Reactions , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
15.
Non-conventional | WHO COVID | ID: covidwho-304369

ABSTRACT

BACKGROUND: To track the European spread of SARS-CoV-2, decentralized testing became necessary and test capacity needed to be expanded outside reference laboratories rapidly. METHODS: We assessed via an online questionnaire the preparedness of European hospital laboratories for detection of SARS-CoV-2 and listed the main drawbacks for implementation. RESULTS: Forty-five percent of the surveyed labs had a test in place by March 26th which is well into the first wave of the pandemic in most countries. CONCLUSIONS: The main implementation barriers for introduction of a SARSCoV-2 molecular assay in European diagnostic laboratories were availability of positive controls and a specificity panel.

SELECTION OF CITATIONS
SEARCH DETAIL